<img alt="" src="https://secure.insightful-enterprise-intelligence.com/783141.png" style="display:none;">

NVIDIA H100 SXMs On-Demand at $3.00/hour - Reserve from just $2.10/hour. Reserve here

Deploy 8 to 16,384 NVIDIA H100 SXM GPUs on the AI Supercloud. Learn More

|

Published on 21 May 2024

What You Need to Know About Large AI Model Training

TABLE OF CONTENTS

updated

Updated: 29 Nov 2024

The volume and complexity of data are growing exponentially with the demand for scalable and computational power becoming imperative. Massive model training involves training AI models with an enormous number of parametres, often exceeding billions or even trillions. These large-scale models can capture intricate patterns and relationships within vast datasets offering top performance and accuracy in various domains, such as natural language processing, computer vision and scientific simulations. A recent example could be Meta LLaMA 3, which was pre-trained on over 15 trillion data tokens from publicly available sources, seven times larger than the dataset used to train its predecessor LLaMA 2. While another prominent example is none other than its rival i.e. OpenAI's ChatGPT-3 trained on 175 billion parameters.

Read our Documentation: Running a Chatbot: How-to Guide

What is Large AI Model Training?

Large Scale Model Training is an approach to developing advanced artificial intelligence models to scale AI training with massive datasets and parameters. The significance of this technique lies in scaling up the size and complexity of neural networks, which are the fundamental building blocks of many AI models. These models are trained on vast amounts of data comprising billions or even trillions of individual data points, to capture intricate patterns and relationships that would otherwise be challenging to discern.

Training AI models requires distributing the workload across multiple high-performance computing (HPC) systems while leveraging techniques like data parallelism, model parallelism, and pipeline parallelism. This scalability allows efficient utilisation of available computational resources such as GPUs for accelerating the AI model training process. However, enough credit should be given to AI in the cloud since it offers democratised access to virtually unlimited scalable resources. This means you can train even larger models with reduced infrastructure costs.

How Does Large AI Model Training Work?

To learn how large scale AI training works, we first need to understand the structured process behind AI. The process is discussed in detail in the table below:

Step 1: Problem Definition

Identify a problem or opportunity for improvement.

Step 2: Data Collection

Gather relevant data related to the problem.

Step 3: Data Preparation

Clean, transform, and prepare the data for analysis.

Step 4: Model Development

Use machine learning algorithms to train a model on the prepared data.

Step 5: Model Training

Train the model to learn patterns and relationships in the data.

Step 6: Model Evaluation

Test and evaluate the performance of the trained model.

Step 7: Model Refining

Refine the model by tweaking parameters and retraining.

Step 8: Deployment

Deploy the final model into a production environment.

Step 9: Maintenance

Monitor and update the model as needed to ensure ongoing performance.

Now, if you see the steps involved in the AI model training process, it is evident that it begins with a conceptual understanding of a problem and ends with deploying a model capable of solving it. During “Step 5: Model Training” the AI models learn from vast amounts of data to make predictions or decisions. However, when it comes to large-scale AI models, the training step differs from traditional methods due to the large volume of data involved.

So, distributed computing and parallelism are employed in large-scale AI model training to accelerate the AI model training process and handle the extensive data. These techniques involve splitting the workload across multiple machines or processors, allowing for parallel processing and reducing the overall training time.

Similar Read: How to Use Batching for Efficient GPU Utilisation

Parallelisation Techniques

To facilitate efficient training of AI models, several parallelisation techniques are utilised:

  • Data Parallelism: In data parallelism, the massive dataset is divided into smaller subsets, which are processed simultaneously on different machines or processors. Each machine trains the model on its respective data subset, and the resulting model updates are combined to update the global model. This approach is particularly useful when the dataset is too large to fit into a single machine's memory.
  • Model Parallelism: Model parallelism involves partitioning the AI model itself across multiple machines or processors. This is often essential when the model is too large to fit onto a single device's memory or computational resources. Different parts of the model are processed concurrently on different machines, and the results are combined to obtain the final output.
  • Pipeline Parallelism: Pipeline parallelism is a technique where different stages of the model's training process are distributed across multiple machines or processors. For example, one processor might handle data pre-processing, another might perform the forward pass, and a third might handle the backward pass and weight updates. This approach allows for efficient utilisation of available resources by ensuring that different components of the training process are executed in parallel.

Pretraining and Fine-tuning

Large-scale AI models often undergo a two-stage training process i.e. pretraining and fine-tuning. Both these stages benefit from the parallelisation techniques mentioned above. These techniques are efficient for training on vast amounts of data and accelerate the overall process.

Pretraining

The pretraining stage involves training the model on a massive general-purpose dataset, allowing it to learn broad patterns, representations, and knowledge from a diverse range of data sources. During this stage, the model's parameters are initialised and adjusted to capture general features and relationships present in the pretraining data.

Pretraining is particularly beneficial for large language models, where the model is trained on vast amounts of text data from various sources, such as books, websites, and databases. This process enables the model to develop a deep understanding of natural language, including syntax, semantics, and contextual information.

For computer vision tasks, pretraining can involve training the model on a vast collection of images, enabling it to learn low-level features like edges, textures, and shapes, as well as higher-level concepts like objects, scenes, and relationships.

Fine-tuning

After pretraining, the model undergoes a fine-tuning stage, where it is further trained on a smaller, task-specific dataset. During this stage, the model's parametres are fine-tuned and adjusted to adapt to the specific task or domain at hand.

Fine-tuning allows the model to leverage the knowledge and representations learned during pretraining while specialising and optimising its performance for the target task. This process is particularly effective because it builds upon the strong foundation established during pretraining, reducing the amount of task-specific data and computational resources required for training.

For example, in natural language processing tasks like question answering or sentiment analysis, the pre-trained language model can be fine-tuned on a smaller dataset specific to the target task, enabling it to learn the nuances and intricacies required for accurate performance.

Similarly, in computer vision applications like object detection or segmentation, the pre-trained model can be fine-tuned on a task-specific dataset, allowing it to adapt its learned representations to the specific objects, environments, or conditions relevant to the target application.

Similar Read: A Guide to Fine-Tuning LLMs for Improved RAG Performance

Challenges of Large AI Model Training

There is no transformative technology that comes without its own set of challenges, and large-scale model training is no exception. Here are five key challenges of large scale AI training:

  1. Computational Demands: Training massive AI models requires immense computational power, often exceeding the capabilities of traditional hardware and infrastructure. 
  2. Data Management: Large-scale models require training on vast amounts of data, which can pose challenges in terms of data storage, preprocessing, and efficient data loading during the training process.
  3. Energy Consumption: The computational intensity of large-scale model training leads to significant energy consumption and associated costs, raising concerns about environmental impact and sustainability.
  4. Infrastructure Scalability: Scaling up the infrastructure to accommodate the growing demands of large-scale model training can be complex and costly, requiring careful planning and resource management.

Similar Read: Top 5 Challenges in Artificial Intelligence in 2024

How Does Cloud Computing Help in Large Scale AI training?

The immense computational demands and data processing requirements of these models often exceed the capabilities of traditional on-premises infrastructure. Cloud computing provides a scalable and flexible solution with access to virtually unlimited resources on demand. With the cloud, you get the ability to dynamically provision and scale up computational resources, such as powerful GPUs and high-performance computing (HPC) clusters, as needed. This scalability ensures that organisations can handle even the most computationally intensive training workloads without being constrained by their local infrastructure. Another factor is flexibility in terms of hardware configurations and software environments. You can choose from a diverse range of GPU options, including the latest and most powerful models tailored for AI workloads. 

The most important factor influencing any organisation’s ability to utilise AI systems and train them is the budget. Cloud computing provides cost-effectiveness by enabling organisations to pay only for the resources they consume, avoiding the upfront capital expenditure and ongoing maintenance costs associated with on-premises infrastructure. 

Similar Read: Tips and Tricks for Developers of AI Applications in the Cloud

Hyperstack: Your Partner for Large Sscale AI training

We at Hyperstack provide a scalable and flexible cloud environment that addresses the challenges associated with training massive AI models. On Hyperstack, you get:

  • Powerful GPU Options: We provide access to a variety of high-performance NVIDIA GPUs, including the NVIDIA A6000, A100, L40, H100 and the latest NVIDIA Blackwell series like the GB200 NVL72, designed specifically for generative AI and large-scale AI systems. 
  • Advanced Networking and Storage Solutions: Our architecture includes ultra-fast networking and storage capabilities, ensuring that data throughput and I/O operations do not become bottlenecks during intensive computations.
  • Peak Efficiency: Our infrastructure is housed within Green Data Centers, designed to handle high-performance computing loads efficiently, ensuring that the hardware runs at peak efficiency when scaling operations.
  • Robust API and Infrastructure: Our API and automated infrastructure management tools allow for easy scaling and management of cloud assets, facilitating the deployment and scaling of machine learning models.
  • Ecosystem and Partner Network: As an Elite NVIDIA partner, we are at the forefront of adopting new GPU technologies and innovations, ensuring access to the latest hardware, software, and developer tools important for developing and deploying large-scale AI models.

Future Outlook of Large Scale AI Training

The future of large AI model training is promising, with significant advancements anticipated in computational power and scalability. NVIDIA's Blackwell series, for instance, is specifically designed to tackle the challenges of large AI model training. With the Custom Tensor Core technology, NVIDIA TensorRT-LLM and NeMo framework innovations, Blackwell accelerates inference and training for LLMs, including a mixture-of-experts models. The architecture also comes with a focus on secure AI and responsible development. The Blackwell GPUs have advanced confidential computing capabilities to protect AI models and customer data without compromising performance. 

The continued advancement of distributed computing technologies, including advanced networking solutions like NVIDIA's Scalable Data Fabric and high-performance interconnects, will further improve scalability. These technologies will offer more efficient data movement and communication between multiple accelerators for seamless parallelisation across vast computing clusters. Other advancements could be in software and algorithmic techniques, such as model parallelism, mixed-precision training, and intelligent model compression for optimising resource utilisation and enabling the training of larger models with existing hardware resources.

As these advancements continue, the future of large-scale AI model training will become increasingly powerful and scalable, paving the way for more sophisticated and capable AI systems that can tackle increasingly complex real-world challenges.

Build Powerful AI Models Faster with Hyperstack’s High-End NVIDIA GPUs. Sign up now to get started!

Similar Reads

FAQs

What is the significance of large AI model training?

Large AI model training allows the development of advanced models with an unprecedented number of parameters, capable of capturing intricate patterns and relationships within vast datasets. This approach offers top performance and accuracy in domains like natural language processing, computer vision, and scientific simulations, enabling the creation of more sophisticated and intelligent AI systems.

How does parallelisation help in large-scale AI model training?

Parallelisation techniques like data parallelism, model parallelism, and pipeline parallelism are crucial for efficient large-scale AI model training. These techniques involve splitting the workload across multiple machines or processors, allowing for parallel processing and reducing the overall training time. This scalability enables the utilisation of available computational resources, such as powerful GPUs, for accelerating the training process.

What is the role of pretraining and fine-tuning in large AI model training?

Large-scale AI models often undergo a two-stage training process: pretraining and fine-tuning. Pretraining involves training the model on a massive general-purpose dataset to learn broad patterns and representations. Fine-tuning then adapts the pre-trained model to a specific task or domain by training it on a smaller, task-specific dataset, optimising its performance for the target application.

What are the key challenges of large AI model training?

Some key challenges of large-scale AI model training include computational demands requiring immense power and specialised hardware, data management challenges due to the vast amounts of data involved, significant energy consumption and associated costs, and the complexity of scaling up infrastructure to accommodate growing demands.

What are the best GPUs for large model training?

Some of the best GPUs available for large model training include the NVIDIA A6000, A100, L40, H100, and the cutting-edge NVIDIA Blackwell GPUs. These GPUs are designed specifically for generative AI and large-scale AI systems. Check our cloud GPU pricing here.


Subscribe to Hyperstack!

Enter your email to get updates to your inbox every week

Get Started

Ready to build the next big thing in AI?

Sign up now
Talk to an expert

Share On Social Media

10 Dec 2024

On December 6, Meta surprised the AI community by unexpectedly releasing Llama 3.3, a ...

30 Jul 2024

According to IDC, the global datasphere will reach a massive amount of 175 zettabytes by ...

24 Jul 2024

Check out our latest guide on deploying Llama 3.1 on Hyperstack [here]. We couldn’t hold ...